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I N T R O D U C T I O N  

The damping of a plane shock wave was t rea ted  in [1, 2] in the one-dimensional  case and in the hydro-  
dynamic approximation. The formula  for damping of a shock wave was obtained in the form of a f ini te-dif-  
ference equation in [11, based on the hypothesis that energy decays in the zone of the shock wave. Although 
this hypothesis does not contradict  the conditions of dynamic consis tency at the shock front it has no s t r ic t  
justification. However, the damping formula  is in sa t i s fac tory  agreement  with known experimental  data. 
Formulas  for the shock front and the form of the momentum as functions of t ime are obtained in [2] on the 
basis of Fr iedr ichs  method for the case of a s t r ike r  and a ba r r i e r  of the same mater ia l .  A s impler  method 
is given below for determining the position of the shock front as a function of t ime.  

We shall use the same assumptions as in [2] to t rea t  the propagation of a shock wave created in an ob- 
stacle by the blow from a plate. We shall make the approximation of assuming that the compress ion  shock is 
an isentropic p rocess .  We shall t reat  the wave propagation in the hydrodynamic approximation without taking 
rigidity, viscosi ty,  and thermal  conductivity into account. Moreover ,  for s implici ty we shall assume initially 
that the s t r iker  and object s t ruck are made of the same mater ia l .  The equation of state of this mater ia l  can 
be represented  by the equation [3] 

p0c2o 
p = -7 -  (o- - t), (1) 

where p is the p ressure ,  p is the density, c is the velocity of sound, n is a constant, and ~= P/P0 is the com-  
press ion.  The subscr ipt  0 indicates that the quantity re fe rs  to the initial state. We shall t rea t  the process  
in the coordinates of space x and t ime t adopted in gasdynamics .  Let the moment of collision coincide with 
the coordinate origin.  

When the plate collides with the obstacle,  shock waves propagate in both directions f rom the contact 
boundary (Fig. 1). A centered rarefact ion wave propagates to the right f rom the point (Xn, t n) where the shock 
wave exits to the r e a r  free surface of the s t r iker  plate. Let 0 and 1 denote the state of the  mater ia l  in front 
and to the r e a r  of the shock wave, respect ively.  Let 2 denote the state of the mater ia l  after  the rarefac t ion  
wave has propagated through it. We introduce the following additional symbols:  D, the velocity of the shock 
wave; u, the mass  velocity. The leading charac te r i s t i c  of the rarefact ion wave overtakes the shock front at 
the point (Xm, tm). For  the wave propagating to the right the Riemann invariant is constant I_ --- const  [41. In 
this case 

c = [(n -- 1)/21u + Co. 

The equation of the c+ charac te r i s t i c  is 

( x  - -  x n ) / ( t  - -  t , )  = co + [(n -~- l)i2]u. (2) 

The equation for  the t r a j ec to ry  of the shock front up to the point (Xm, t m) is the straight line (x/t) =D= 
const, and after this point it is 

d x / d t  = c o -?  [~u. (3) 

Here use has been made of the well-known relation between the wave velocity D and the mass  velocity u, while 
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c o and f~ are constant coefficients.  The quantity c o has the physical  meaning of being the initial velocity of 
sound in the absence of phase transi t ion.  

It can be shown that in the present  approximation of an isentropic shock wave Eq. (3) follows f rom Eq. (1) 

Then 

= (n + 1 ) /4 .  

The fact that the l inear relat ionship (D-u)  ex i s t s  in pract ice  for condensed bodies conf i rms the validity of the 
assumption that shock-wave compress ion  in condensed bodies is isentropic.  A departure f rom lineari ty in 
the relat ion (D-u)  for s t rong waves is a resul t  of the fact that s trong shock waves are not isentropic.  F r o m  
Eq. (2) we have 

u = [ 2 / ( n  + t ) ] [ ( x  - -  x , ~ ) / ( t  - t . )  - -  c o l .  ( 4 )  

Substitution of Eq. (4) in Eq. (3) gives the relat ion 

d x / d t  = A + B ( x  - -  x ~ ) / ( t  - -  t~ ) ,  

whore 

B =2~/(n + l )  = 1/2, A = ( I - - B ) e  0=c0/2. 

The solution of this differential equation has the form 

( x  - - x ~ ) / ( t - - t , ) = c o { t - -  [1 - - ( X m  - -  x ~ ) / c o ( t m  - -  t,~) ][(t,~ - - t , ) / ( t - - t ~ )  i ' / ' } .  (5) 

Equation (5) descr ibes  the t r a j ec to ry  of the shock front in the attenuation zone of the rarefact ion wave 
after  the point (x m, tin). In the range 0 -< x <- x m the equation for the t r a j ec to ry  of the shock front is the straight 
line x=Dt ,  and the mass  velocity behind the wave front remains  constant: u = u  i. The magnitude of the mass  
velocity at the front in the attenuation zone of the rarefact ion wave can be obtained f rom Eqs. (4), (5) as a func- 
tion of t ime:  

it = U l [ ( t  m - -  t ~ ) / ( t  - -  t ,~)]'li .  (6) 

Thus, the mass  velocity at the shock front var ies  in inverse proport ional i ty  to the square root of t ime, 
i.e., it obeys Landan 's  law [5] for  weak waves. 

If  the s t r ike r  and the obstacle are made f rom different mater ia ls ,  the centered ra re fac t ion  wave from 
the r e a r  surface of the s t r ike r  is r e f rac ted  and passes  into the obstacle.  In this case a new pole (x~, t~) can 
be found for  the re f rac ted  rarefact ion wave. If  the coordinates of this pole are substituted into Eqs. (5), (6), 
these equations are then valid for the case where different mater ia ls  collide. 

The experimental  resul ts  of [6] allow us to ver i fy  the validity of different damping formulas .  Calculated 
resul ts  and experimental  data [6] are compared  in Fig. 2. Experimental  values of the mass  velocity u E are 
given on the abscissa ,  and the calculated values u o are given on the ordinate.  
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The solid line cor responds  to exper iment .  Calculated values obtained in [1], on the hypothesis that the 
energy  decays in the shock-wave zone, are denoted by the number  1, resul t s  de termined  f rom Eq. (6) are  
denoted by 2, while 3 denotes values of the mass  veloci ty de termined f rom a formula  which, in our  symbols ,  
gives the mass veloci ty as an explici t  function of t ime obtained in [2]: 

u = c o { 2 ( n  -~i) '[l  {- E((t -- t , ~ ) / ( Y m  - -  irk)> '/'] -~ J} -- c:, (7) 

where 

E 2(n -b l)/[(u: ~- c l ) l c o  - -  t] - -  1 

The following values of n, de termined  f rom exper imenta l  p r e s su re  and compress ion ,  were taken when 
making calculations f rom Eq. (7): 4.5 for  A1, 5.2 for  Pb, 5.05 for Cu, and 5.86 for  Fe. Values of the quan- 
t i t ies  t ,  x, ul, c 1 were taken f rom [6], while values of c o for  four metals  were taken f rom [7]. 

It is c l ea r  f rom Fig. 2 that all th ree  damping formulas  give values of the mass  veloci ty  close to the ex-  
per imenta l  values.  Kozlov [1] noted that the d iscrepancy between exper imenta l  values and those calculated 
f rom his formula  was less than 13.5%. The d iscrepancy between exper imenta l  resu l t s  and those calculated 
f r o m  Eq. (7) reaches  16.2%. Calculations f rom Eq. (6) give a d i screpancy  with exper iment  of less than 10%, 
and, in the major i ty  of eases ,  less than 3-4%. 

Thus, Eq. (6) gives a somewhat be t t e r  agreement  with exper iment .  
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